

EMC CCB Meeting

HiresWindow v6.1

Presented by:

Matthew Pyle

HiresW overview

- 3-4 km, no parameterized convection forecasts
- Two cores: WRF-ARW and NMMB
- Twice daily runs to 48 h over CONUS and four non-CONUS domains.
- Complements the NAM nests, helping to provide a variety (multi-model, multi-analysis) of highresolution model solutions in the NCEP suite, forming a pseudo-ensemble.

HiresW overview

Outline

- Upgrade elements what is changing and why
- Pre-implementation testing to date
- Parallel testing evaluation stats and examples
 - Echo top height and reflectivity
 - Precipitation
 - Surface sensible weather
 - PBL and surface layer
 - Synoptic/upper air

Upgrade elements

- Many infrastructure changes, the largest being the direct production of GRIB2 output. Also adds job restartability.
- Model code updates*
- Increase in vertical resolution (40 to 50 levels)*
- New/revised products:
 - High Resolution Ensemble Forecast (HREF) ensemble guidance produced from time-lagged HiresW and NAM nest output
 - New products for aviation and severe weather*

Upgrade elements

	Current prod	Planned upgrade
Model code version	WRFV3.5 (ARW) Aug 2013 trunk (NMMB) + updates	WRFV3.6.1 (ARW) + updates Jan 2015 trunk (NMMB) + updates
Vertical levels	40	50
Microphysics (ARW)	WSM6	Modified WSM6 (to slow graupel production, benefiting echo top height forecasts)

Extends certain Grasso et al (2014) suggestions – Brad Ferrier provided key guidance

Enhanced vertical resolution, particularly in PBL

HREF membership overview

GrADS: COLA/IGES

HREF example

probability of exceedance, REFC > 30 dBZ

Upgrade elements

Expected benefits to end users from upgrade:

- Improved echo top height bias from WRF-ARW (only model improvement targeted in scope of upgrade)
- Improved precipitation bias performance
- Better resolution of PBL and surface layer features
- New forecasting tools:
 - Probabilistic HREF guidance
 - Ceiling height (AWC), -10 C reflectivity (lightning proxy)

Pre-Implementation Testing

- Retrospective testing (thus far):
 - Warm season (June 13 Jul 8, 2014)
 - Cool season (Jan 26 Feb 26, 2015)
 - Large domains (CONUS/AK) + PR completed HI
 & Guam in progress
- Retrospective testing limited somewhat due to the lack of a full spring convective season for current ops HiresW 6.0.x (implemented June 2014).
- See improvement in targeted fields (especially echo top height in WRF-ARW), but many/most results neutral.

Warm season echo top for WRF-ARW

Equitable threat score

Bias

Grid-to-grid verification against radar mosaic

Ops HiresW

----- Para HiresW

Improvements both to ETS and bias; low bias reduced in 25-45K foot range important for aviation.

Echo top example 1 Jul 2014, 00Z

The para WRF-ARW has broader coverage in 25-40K foot range (pale blue colors)

Warm season composite reflectivity for WRF-ARW

Bias corr Equitable Threat Score

Bias

Grid-to-grid verification against radar mosaic

Ops HiresW

---- Para HiresW

Large bias difference from:

- WSM6 changes
- shift from model-generated to post-generated reflectivity

bias=1

Warm season composite reflectivity for NMMB

Bias corr Equitable Threat Score

Bias

20 THRES 30 (5) 40

10

Grid-to-grid verification against radar mosaic

Ops HiresW

----- Para HiresW

bias=1

50 dBZ

CONUS ARW precipitation – all test cases

Bias corr Equitable Threat Score

Bias

June 13 – July 8, 2014 Jan 25 – Feb 26, 2015

24/36/48 h precip verification over CONUS

Ops HiresW

---- Para HiresW

bias=1

CONUS ARW precipitation – by season

CONUS NMMB precipitation– all test cases

Bias corr Equitable Threat Score

Bias

June 13 – July 8, 2014 Jan 25 – Feb 26, 2015

24/36/48 h precip verification over CONUS

Ops HiresW

---- Para HiresW

bias=1

CONUS NMMB precipitation – by season

CONUS 2 m temp, 12Z cycle

ops RMS
para RMS

ops bias para bias

NMMB

WRF-ARW

CONUS 10 m winds, 12Z cycle

ops RMS para RMS

ops bias para bias

NMMB

WRF-ARW

AK 2 m temp, 06Z cycle

NMMB WRF-ARW

AK 10 m winds, 06Z cycle

ops bias para bias

NMMB

WRF-ARW

Improved convective PBL height forecasts (warm & cold season, valid 00Z)

11 m reduction in RMS error

25 m reduction in RMS error

Improved representation of shallow arctic air

RMS errors at 48 h forecast time for CONUS – NMMB

All tests run to date (about 2 months of cases)

OPS NMMB

PARA NMMB

RMS errors at 42 h forecast time for AK - NMMB

All tests run to date (about 2 months of cases)

OPS NMMB

PARA NMMB

RMS errors at 48 h forecast time for CONUS - ARW

All tests run to date (about 2 months of cases)

OPS ARW

RMS errors at 42 h forecast time for AK - ARW

HMS vector wind error vs. raobs over G249 for AKARW and AKARWX 42-h forecast from 201406140600 to 201502270600

All tests run to date (about 2 months of cases)

OPS ARW

PARA ARW

Root-mean-square RH error [2]

RMS relative humidity error vs. raobs over G249 for AKARW and AKARWX 42-h

30

Summary

- The parallel HiresW system improves upon the biggest complaints from the 2014 upgrade: echotop height and composite reflectivity in the CONUS WRF-ARW run
- Subtle improvements to precipitation bias and PBL structure
- By most other metrics, change in forecast skill is fairly neutral
- HREF helps pave path to ensemble future, and along with other new products adds forecast utility
- Hoping to hand off code to NCO by next Friday at the latest

Backup Slides

CPU Usage (model jobs)

Domain	Ops model tasks (nodes) NMMB / ARW phase1 nodes	Para model tasks (nodes) NMMB / ARW phase2 nodes
CONUS	525(33 nodes) / 592(37)	696(29 nodes) / 816(34)
Alaska	496(31) / 540(34)	672(28) / 720(30)
HI	45(3) / 48(3)	72(3) / 67(3)
PR	80(5) / 80(5)	136(6) / 105(5)
Guam	42(3) / 63(4)	72(3) / 72(3)

Model and observed 1 km AGL radar, 00Z 1 Jul 2015

Model and observed 1 km AGL radar, 00Z 1 Jul 2015

CONUS visibility, 12Z cycle

ops RMS para RMS

ops bias para bias

NMMB

WRF-ARW

Warm season echo top for NMMB (not targeted for improvement like in WRF-ARW)

Equitable threat score

STAT=FHO>1000 PARAM=ETP FHOUR=06+09+12+15+18+21+24+27+30+33+36 V_ANL=MOSAIC V_RGN=G227 VYMDH=201406140000-201407092300 CI ALPHA=0.050 MODEL -CONUSIMMS - - - - - - MODEL=CNSNMMBX OBSERVATION COUNTS: 0.08 0.02 16000.00 Height (kft) V_RGN=G227 VYMDH=201406140000-201407092300 CI ALPHA=0.050 - - - - - - - - MODEL = CNSNMMEX 98E05 Height (kft)

Grid-to-grid verification against radar mosaic

Ops HiresW

----- Para HiresW

Bias

Improved convective PBL height forecasts (warm season, valid 00Z)

23 m reduction in avg RMS error

14 m reduction in avg RMS error

Representation of shallow arctic air

Model 1 km AGL radar, 00Z 1 Jul 2015

Model and observed 1 km AGL radar, 03Z 1 Jul 2015

